差别
这里会显示出您选择的修订版和当前版本之间的差别。
| 两侧同时换到之前的修订记录前一修订版后一修订版 | 前一修订版 | ||
| 人工智能:材料科学:chemeleon2:chemeleon2-模型加载基本情况 [2026/02/02 03:28] – ctbots | 人工智能:材料科学:chemeleon2:chemeleon2-模型加载基本情况 [2026/02/02 03:50] (当前版本) – ctbots | ||
|---|---|---|---|
| 行 12: | 行 12: | ||
| ===== 数据集来源区别 ===== | ===== 数据集来源区别 ===== | ||
| - | ^ 方面 ^ mp_20alex_mp_20 | + | ^ 方面 |
| - | | 数据来源 | 仅来自 Materials Project (MP) 数据库 / 来自 Materials Project (MP) + Alexandria (Alex) 数据库 | | + | | 数据来源 |
| - | | 结构数量 | 约几万条(通常训练集 ~4–5万左右) / 约 60.7万 条(607, | + | | 结构数量 |
| - | | 原子数限制 | 单元格内 ≤20 个原子 / 单元格内 ≤20 个原子 | | + | | 原子数限制 |
| - | | 稳定性筛选 | 一般筛选稳定结构(E_hull 较低) / 更严格:E_above_hull < 0.1 eV/atom | | + | | 稳定性筛选 |
| - | | 数据多样性 | 相对较小、覆盖面有限 / 显著更大、化学组成和结构类型更多样 | | + | | 数据多样性 |
| - | | 典型用途 | 早期生成模型的基准(如 CDVAE、DiffCSP、MatterGen-MP 等) / MatterGen 等新一代大模型的训练集(性能显著提升) | | + | | 典型用途 |
| - | | 模型性能对比 | 训练出来的模型生成 SUN 材料比例较低、RMSD 较高 / 训练后 SUN% 可提升 70% 左右,RMSD 下降 5 倍左右 | | + | | 模型性能对比 |
| + | |||
| + | 本地快速验证,可以用 mp_20 ,如果是精度要求高可以用 alex_mp_20 | ||
| + | |||
| + | ===== VAE的基本结构 ===== | ||
| + | < | ||
| + | VAEModule( | ||
| + | (encoder): TransformerEncoder( | ||
| + | (atom_type_embedder): | ||
| + | (lattices_embedder): | ||
| + | (0): Linear(in_features=9, | ||
| + | (1): SiLU() | ||
| + | (2): Linear(in_features=512, | ||
| + | ) | ||
| + | (frac_coords_embedder): | ||
| + | (0): Linear(in_features=3, | ||
| + | (1): SiLU() | ||
| + | (2): Linear(in_features=512, | ||
| + | ) | ||
| + | (transformer): | ||
| + | (layers): ModuleList( | ||
| + | (0-7): 8 x TransformerEncoderLayer( | ||
| + | (self_attn): | ||
| + | (out_proj): NonDynamicallyQuantizableLinear(in_features=512, | ||
| + | ) | ||
| + | (linear1): Linear(in_features=512, | ||
| + | (dropout): Dropout(p=0.0, | ||
| + | (linear2): Linear(in_features=2048, | ||
| + | (norm1): LayerNorm((512, | ||
| + | (norm2): LayerNorm((512, | ||
| + | (dropout1): Dropout(p=0.0, | ||
| + | (dropout2): Dropout(p=0.0, | ||
| + | (activation): | ||
| + | ) | ||
| + | ) | ||
| + | (norm): LayerNorm((512, | ||
| + | ) | ||
| + | ) | ||
| + | (decoder): TransformerDecoder( | ||
| + | (transformer): | ||
| + | (layers): ModuleList( | ||
| + | (0-7): 8 x TransformerEncoderLayer( | ||
| + | (self_attn): | ||
| + | (out_proj): NonDynamicallyQuantizableLinear(in_features=512, | ||
| + | ) | ||
| + | (linear1): Linear(in_features=512, | ||
| + | (dropout): Dropout(p=0.0, | ||
| + | (linear2): Linear(in_features=2048, | ||
| + | (norm1): LayerNorm((512, | ||
| + | (norm2): LayerNorm((512, | ||
| + | (dropout1): Dropout(p=0.0, | ||
| + | (dropout2): Dropout(p=0.0, | ||
| + | (activation): | ||
| + | ) | ||
| + | ) | ||
| + | (norm): LayerNorm((512, | ||
| + | ) | ||
| + | (atom_types_head): | ||
| + | (frac_coords_head): | ||
| + | (lattice_head): | ||
| + | ) | ||
| + | (quant_conv): | ||
| + | (post_quant_conv): | ||
| + | ) | ||
| + | </ | ||
| + | |||
| + | ===== LDM结构模型打印 ===== | ||
| + | < | ||
| + | LDMModule( | ||
| + | (denoiser): DiT( | ||
| + | (x_embedder): | ||
| + | (t_embedder): | ||
| + | (mlp): Sequential( | ||
| + | (0): Linear(in_features=256, | ||
| + | (1): SiLU() | ||
| + | (2): Linear(in_features=768, | ||
| + | ) | ||
| + | ) | ||
| + | (blocks): ModuleList( | ||
| + | (0-11): 12 x DiTBlock( | ||
| + | (norm1): LayerNorm((768, | ||
| + | (attn): MultiheadAttention( | ||
| + | (out_proj): NonDynamicallyQuantizableLinear(in_features=768, | ||
| + | ) | ||
| + | (norm2): LayerNorm((768, | ||
| + | (mlp): Mlp( | ||
| + | (fc1): Linear(in_features=768, | ||
| + | (act): GELU(approximate=' | ||
| + | (drop1): Dropout(p=0, | ||
| + | (norm): Identity() | ||
| + | (fc2): Linear(in_features=3072, | ||
| + | (drop2): Dropout(p=0, | ||
| + | ) | ||
| + | (adaLN_modulation): | ||
| + | (0): SiLU() | ||
| + | (1): Linear(in_features=768, | ||
| + | ) | ||
| + | ) | ||
| + | ) | ||
| + | (final_layer): | ||
| + | (norm_final): | ||
| + | (linear): Linear(in_features=768, | ||
| + | (adaLN_modulation): | ||
| + | (0): SiLU() | ||
| + | (1): Linear(in_features=768, | ||
| + | ) | ||
| + | ) | ||
| + | ) | ||
| + | (vae): VAEModule( | ||
| + | (encoder): TransformerEncoder( | ||
| + | (atom_type_embedder): | ||
| + | (lattices_embedder): | ||
| + | (0): Linear(in_features=9, | ||
| + | (1): SiLU() | ||
| + | (2): Linear(in_features=512, | ||
| + | ) | ||
| + | (frac_coords_embedder): | ||
| + | (0): Linear(in_features=3, | ||
| + | (1): SiLU() | ||
| + | (2): Linear(in_features=512, | ||
| + | ) | ||
| + | (transformer): | ||
| + | (layers): ModuleList( | ||
| + | (0-7): 8 x TransformerEncoderLayer( | ||
| + | (self_attn): | ||
| + | (out_proj): NonDynamicallyQuantizableLinear(in_features=512, | ||
| + | ) | ||
| + | (linear1): Linear(in_features=512, | ||
| + | (dropout): Dropout(p=0.0, | ||
| + | (linear2): Linear(in_features=2048, | ||
| + | (norm1): LayerNorm((512, | ||
| + | (norm2): LayerNorm((512, | ||
| + | (dropout1): Dropout(p=0.0, | ||
| + | (dropout2): Dropout(p=0.0, | ||
| + | (activation): | ||
| + | ) | ||
| + | ) | ||
| + | (norm): LayerNorm((512, | ||
| + | ) | ||
| + | ) | ||
| + | (decoder): TransformerDecoder( | ||
| + | (transformer): | ||
| + | (layers): ModuleList( | ||
| + | (0-7): 8 x TransformerEncoderLayer( | ||
| + | (self_attn): | ||
| + | (out_proj): NonDynamicallyQuantizableLinear(in_features=512, | ||
| + | ) | ||
| + | (linear1): Linear(in_features=512, | ||
| + | (dropout): Dropout(p=0.0, | ||
| + | (linear2): Linear(in_features=2048, | ||
| + | (norm1): LayerNorm((512, | ||
| + | (norm2): LayerNorm((512, | ||
| + | (dropout1): Dropout(p=0.0, | ||
| + | (dropout2): Dropout(p=0.0, | ||
| + | (activation): | ||
| + | ) | ||
| + | ) | ||
| + | (norm): LayerNorm((512, | ||
| + | ) | ||
| + | (atom_types_head): | ||
| + | (frac_coords_head): | ||
| + | (lattice_head): | ||
| + | ) | ||
| + | (quant_conv): | ||
| + | (post_quant_conv): | ||
| + | ) | ||
| + | ) | ||
| + | |||
| + | </ | ||